Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus

Por um escritor misterioso

Descrição

Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Super-resolution imaging of AP-Nlg1 in organotypic hippocampal slices.
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
PDF) Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Constitutive deletion of Nrxn2 increases CA3➔CA1 synaptic connections
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Frontiers Nano-Organization at the Synapse: Segregation of Distinct Forms of Neurotransmission
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Molecular replacement with Nrxn3 A687T SS4 enhances presynaptic release
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Modeling a Neurexin-3α Human Mutation in Mouse Neurons Identifies a Novel Role in the Regulation of Transsynaptic Signaling and Neurotransmitter Release at Excitatory Synapses
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
PDF] Modeling a Neurexin-3α Human Mutation in Mouse Neurons Identifies a Novel Role in the Regulation of Transsynaptic Signaling and Neurotransmitter Release at Excitatory Synapses
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Modeling a Neurexin-3α Human Mutation in Mouse Neurons Identifies a Novel Role in the Regulation of Transsynaptic Signaling and Neurotransmitter Release at Excitatory Synapses
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. - Abstract - Europe PMC
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neurexins: molecular codes for shaping neuronal synapses
de por adulto (o preço varia de acordo com o tamanho do grupo)