Visualizing the gradient descent method

Por um escritor misterioso

Descrição

In the gradient descent method of optimization, a hypothesis function, $h_\boldsymbol{\theta}(x)$, is fitted to a data set, $(x^{(i)}, y^{(i)})$ ($i=1,2,\cdots,m$) by minimizing an associated cost function, $J(\boldsymbol{\theta})$ in terms of the parameters $\boldsymbol\theta = \theta_0, \theta_1, \cdots$. The cost function describes how closely the hypothesis fits the data for a given choice of $\boldsymbol \theta$.
Visualizing the gradient descent method
Variants of Gradient Descent Algorithm
Visualizing the gradient descent method
Visualizing the gradient descent in R · Snow of London
Visualizing the gradient descent method
Gradient Descent in Machine Learning: What & How Does It Work
Visualizing the gradient descent method
Gradient Descent Visualization - Martin Kondor
Visualizing the gradient descent method
Gradient Descent vs Adagrad vs Momentum in TensorFlow
Visualizing the gradient descent method
Descent method — Steepest descent and conjugate gradient in Python, by Sophia Yang, Ph.D.
Visualizing the gradient descent method
Gradient Descent animation: 1. Simple linear Regression, by Tobias Roeschl
Visualizing the gradient descent method
How to visualize Gradient Descent using Contour plot in Python
Visualizing the gradient descent method
Gradient Descent With AdaGrad From Scratch
Visualizing the gradient descent method
Gradient Descent from scratch and visualization
Visualizing the gradient descent method
ZO-AdaMM: Derivative-free optimization for black-box problems - MIT-IBM Watson AI Lab
de por adulto (o preço varia de acordo com o tamanho do grupo)